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Service de Physique Thheorique CEN-Saclay, 91 191 Gif-sur-Yvette, Cedex, France 

Received 16 June 1985 

Abstract. We obtain explicit homogeneous and inhomogeneous solutions for the d- 
dimensional nonlinear Boltzmann equations. We assume Maxwell particles and time 
dependent external forces proportional either to the velocity or to the space variables. We 
find examples of distributions which relax towards oscillating Maxwellians and others 
which relax towards absolute Maxwellians. 

At the present time, it is of interest to study asymptotic behaviour of physical models 
subjected to external forces with a varying parameter. The study of the equilibrium 
distributions of the Boltzmann equation, with external forces spatially, x, dependent 
but without velocity, U, is very old, Boltzmann himself contributed to this study 
(Boltzmann 1909, Uhlenbeck and Ford 1963, Cergignani 1975). Assuming a vanishing 
collision term, he found time dependent solutions. 

Here we study first a,( t ) u  forces and are mainly interested in oscillating a,( t )  with 
a varying parameter. We give explicit homogeneous and inhomogeneous solutions 
with a non-trivial collision term. The homogeneous equilibrium distributions can 
oscillate between different Maxwellians multiplied by an oscillating time factor, while 
the inhomogeneous ones to go to zero (expansion) and we discuss the possibility of 
introducing sources. Second, with a,( t ) x  forces or harmonic external potentials, we 
still find the possibility of oscillating Maxwellians. 

We start with a d-dimensional Boltzmann equation (BE) 

( a ,  + U d, + A,( t )  * 3,  + A (  U, X, t))f(U, X, t ) =  Col(f) ' 

A = a,(  t ) a ,  - U or A = a , ( t ) x . a ,  (1) 

and assume Maxwellian particles. In the nonlinear collision term Col(f), the interaction 
appears only through the scattering cross section dd'(,y).  d = 1 is the Kac model (Kac 
1956, Uhlenbeck and Ford 1963), for which the momentum has been dropped; d 3 2 
models for which energy and momentum conservation holds; d = 3  is the standard 
Boltzmann model. When no external force is present, explicit solutions are known 
(Ernst 1979, 1981, Cornille and Gervois 1980) which are the generalisation of the d = 3 
so called Bobylev-book-Wu solution (Bobylev 1976, 1984, Krook and Wu 1976, 
Muncaster 1979). For the Kac model, other exact solutions exist (Cornille 1984, 
1985a, b, c). 

Here we give new exact solutions for d 3 1 and study their relaxation towards 
equilibrium. We sketch briefly the results, while a complete study will be performed 
elsewhere (Cornille 1985d). 
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We begin with a , ( t )u  forces and d 3 2 homogeneous formalism. Let us assume 
that for t > to, Col(f) = 0. Then the LHS of (1) defines an asymptotic solution fa,: 

fas(c, t )  = constant v exp[-(yc)’/2] y = v”d = exp( -1‘; a,( t ’ )  dt’) t > to 

( U)Y(  t ) = ( U) t = O +  c =  U-(U) 

(U) being the mean velocity, po( t )  = po(0), the local density po = sf  du and c the peculiar 
velocity. fa, is the product of a time factor v by a (c, t )  dependent Gaussian. We find 
(i) 1‘ a, dt’+*m,f,,+O; (ii) 5‘ a ,  dt’+constant,f,,+exp(-c2) xconstant; (iii) j ’ a ,  dt’ 
oscillates, fa, oscillates too. 

In the last case, we discuss the Gaussian (c, t )  term of (2). For instance, we assume 
that a, is periodic and more precisely 

Ior a, dt’ = sin t + A sin qt (3 )  

(for simplicity we choose t o = O ) .  We obtain (i) if A = 0, y ( t )  is periodic with period 
T = 27r and the Gaussian term will oscillate between two Maxwellians; (ii) if A # 0 
and q integer, we have competition between a circular function Tl = 27r and a harmonic 
function Tz = 2w/ q. For instance, for q = 2, 0 < A < 0.5, the Gaussian still oscillates 
between two Maxwellians and four for A > 0.5. For q = 3, O <  A <$ we find two 
Maxwellians, four for A > $ and three for A = 1. And so on for q = 4,5, . . . . (For q 
irrational, the Gaussian term is quasi-periodic with a countable set of extrema1 Maxwel- 
lians.) Adding the trivial periodic time factor v in fa,, 8, logfa,= a,( -d +(cy12), the 
extrema are no longer provided only by al(t)  = 0 but also by \cl, t values. 

The important point is that starting with a force, linear superposition of two circular 
functions, we emerge with fa, being the product of two periodic functions. When the 
parameter is varying we observe the appearance of possible harmonics. Here the 
asymptotic behaviour, being obtained with negligible collision terms (the nonlinear 
part of the BE), are provided by the linear part of the BE. 

In the inhomogeneous formalism, Col(f) = 0 for t > to, we obtain a particular class 
fa, = v exp[-&y~)~] ,  v given by (2) but y is different: 

y ( t )  = [ 1 + po 1‘: exp (1‘: a, dt”) dt’] exp( -1‘: a,  dt’) 

and reduces to the previous one if the constant po is zero. For (U) = U - c, a new term 
pox appears, while po = ~ y - ~ .  This class is particular because po is x independent and 
x is present only in (U) and linear. If, as in the homogenous case, we study the 
asymptotic behaviour in terms of the forces a, (?) ,  then a great difference occurs. In 
order to have non-trivial ( #  0 or # CO) fa, when t + CO, both terms v( t )  and the Gaussian 
must be non-trivial. Let us assume 

ainf < v - ” ~  = exp 1 ‘ a, dt’ < asup 
to 

asup and ainf being finite constants. v is then non-trivial but (1 + poai,rt)a;,p < y(  t )  < 
(1 + p O a , u p f ) a ~ , f .  Consequently (ycl+ CO and f +  0. In conclusion, we can have separ- 
ately a non-trivial time factor v or a Gaussian term, but not both. 
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In the rest of this letter we present exact solutions relaxing towards fa, given by 

In table l (a )  we present the results for the homogeneous d = 1 Kac model with 
(2) or (2') and at the end, solutions for a,x forces. 

linear operator a,  + ao(t)d, + a1(t)d,u. 

Table 1. Homogeneous Kac model d = 1, ao(t)a, + N u ,  1). 

po(O), K, c p ( O ) ,  ao(0) constants such that f( w, 0) > 0; if a,(O) = O+ < = 0 -P fj = 7 = cp 

If a, = 0, the exact solution is necessarily even in U, while if a,  0 an odd part 
exists, but ao(r) and a , ( t )  are linked. As in (2) or (2') the solution is the product of 
a v ( t )  factor by a function of t, U. f can be written: 

- 
K being a constant. 7, r] ,  r ]  depend on both the moments 7, of the differential cross 
section u ( ' ) ( x )  and t. 7, r] ,  {+O when t +  00, while p o ( t )  = p,(O). 

We obtain (i) if I' a, dt '+ *a, f+O; (ii) if I' a ,  dt '+ constant, f+ a Maxwellian; 
(iii) if 1' a ,  dt '  oscillates between two finite values, 

f + f a s =  ( 2 ~ K ) - " ~ p ~ ( 0 )  [ exp ( - 1,' a1 dt')] exp(-w2/2) 

i.e. a product of a pure oscillating time term by an oscillating Maxwellian. 
In the last two cases there exist two successive regimes: first, up to the to value of 

(2) where 7, r] ,  G - )  0 and f becomes equivalent (but not identical) to fa,, and second 
the oscillatory fa, regime. In order to have an estimation of the first regime, we define 
a reduced distribution F(o, t )  =f(o, t)/fas(w, t )  and investigate the large t, fixed w 
behaviour: 

F-1--04/872(f)+o;ST(t). (4) 
We associate two relaxation times T, = (2u2p0(0))-', To = ( ~ ~ p ~ ( 0 ) ) - '  for the even and 
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odd parts. Depending on whether To < T, or T, < To, the relaxation is from below or 
can be from above, so that the relaxation towards fas depends on the model of the 
cross section. We have numerically checked these properties (Cornille 1985d). 

In table 2(a), for d 2 2 we have written down a class of homogeneous (po = 0) and 
inhomogeneous (po # 0) solutions f ( w ,  t )  with w = y ( t ) c K - ’ / * ,  K being a constant 
and y the same as in (2’). We still have a time factor v ( t )  multiplied by a function 
g(w,  t )  playing a role similar to the above Gaussian: 

g(w, t )  =f(2?rK)d’2(PO(0)v)-1 gas = exp(-w2/2) ( 5 )  

All the previous properties of the Kac model can be studied. If cp( t )  + 0, we define 
a reduced distribution F = f ( w ,  f)/fas(w, I) = g(w, t ) / g a s ( w ) ,  and find F -  1 = 
-w4cp2(t)/8 with a relaxation from below. The relaxation time is (a id ’po(0 ) ) - ’  for 
po = 0 and can be estimated for po # 0. If we study the asymptotic behaviour in terms 
of the (c ,  t )  variable, a great difference occurs between po=O and p o f  0. For the 
homogeneous po = 0 solutions with local density po( t )  = po(0 )  we find (i) 1; a, dt’+ f03, 

f+ 0 (g + constant or zero); (ii) a ,  d t  + constant, g and f+ a Maxwellian; (iii) 
5; a, dt’ oscillating, then g, f oscillate too. Numerically, for d = 3 homogeneous g(c,  t )  
we choose the forces al ( t )  of (2) with q = 3 .  In figure 1 for the two values A =0.1, 1 
we plot the different relaxation curves. We define a new time variable TT = t .  We see 
that after T = 0.4,0.4 the asymptotic regimes are reached and g = gas oscillates between 
two or three Maxwellians. 

On the other hand, for the pO#O inhomogeneous formalism where po is time 
dependent, we find the same difficulty as above in (2’). For instance if a,( t )  = a,(O) > 0, 
then y ( t )  + 03, g + O , f +  0, except if I C [  = 0. If we assume that a, dt’ is bounded from 
below and from above (for instance, 1; a, dt’+ constant or oscillating) then v is also 
bounded but y + CO, g and f+ 0 except for IcI = 0. 

In conclusion, in the presence of a,( ?)a, v oscillating external forces, the particles 
described by the various d-dimensional exact solutions exhibit general features which 
are different in the homogeneous and inhomogeneous formalisms. Let us try to give 
a physical meaning to the force. If we consider that the particles described by the BE 

are a suspension in viscous fluids (or aerosols in gas) then the force can be described 
as the decelerations due to viscosity. If we try to understand the failure of these 
inhomogeneous distributions (f+ 0 corresponding to an expansion), it may be true 
that the particles are not confined in the space because we have not introduced boundary 
conditions. We could also try to introduce both sources and forces. We present a 
mathematical model: in (1) let A be the sum of a force and a source 

~ = a , v . a , = a , a , -  0-da,. ( 6 )  

Then the density is not conserved but in& provided by (2) or (2’) v is a constant. 
The corresponding exact solutions for the Kac model and dimensions d 3 2 are written 
down in tables l (b )  and 2(b). Now in both homogeneous and inhomogeneous formal- 
isms, oscillating Maxwellians are allowed (Cornille 1985d). In the inhomogeneous 
po # 0 case we can choose either a,(  t )  = al(0) +a ,  log(AoS A ,  sin t + A 2  sin q t )  or 
y(  t ) - ’  = 1 + (sin t + A sin q t ) r .  On the other hand, in table 2( b) (po  # 0), let us assume 
a l ( t ) =  a,(O)>O; when t+w,  y + p o  and f + ( 2 ? r K ) d ’ 2 e x p ( - c 2 p ~ K - 1 ) ,  an absolute 
Maxwellian. 

In table 2( c )  we have written down explicit d 3 2 inhomogeneous solutions corre- 
sponding to an harmonic velocity dependent potential with force A = a,( t ) x  - a, Then 
v( t )  = 1 and the Gaussian still has the variable w = ~ y ( t ) K - ” ~  but a , ( t )  = ($zy)y- ’ .  
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Figure 1. Plot of the homogeneous g(lc1, t = m )  given by (5) against IcI, a , ( r )=  
s i n t + A s i n 3 f , p , , ( O ) = 2 , c p ( O ) = 0 . 4 , K = 1 , ~ ~ ~ ~ = 1 , d = 3 .  ( a ) A = O . l , ( b ) A = l . O .  Values 
of 7 given on each curve. 

We easily find oscillating Maxwellians, for instance with y = 1 + (sin r + A sin q t )  r. We 
can also have solutions relaxing towards absolute Maxwellians: for instance, with 
a,=  a,(O) exp(-t),a,(0)>0,then[10(2a~’2(0))]-’10[2a:/2(0) exp(-t/2)]= y ( t ) ,  y ( t ) +  
constant and f +  exp( -constant x \cl*). We notice that for spatially dependent forces 
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Table 2. d 2 2, A,( 1) J ,  + A( U, x, I). 

Homogeneous, po = 0 Inhomogeneous, po f 0 

f'0 if 0 < cp(0) < (1 + i d ) - '  

1 + p, jL exp(j i  a,  dt") d t '  
p, = constant y (  t )  = a,  = p0y- '  +a, log y-' 

exp(j: a,  dt') 

( b )  A = a , ( t ) u . J ,  v ( t ) = l  

F, = a r Y  

( c )  A = a , ( r ) x . J ,  u ( t ) = l  

Y ( 0 )  = 1 

other exact solutions exist. To my knowledge, the examples given in this letter of d 5 2 
inhomogeneous solutions relaxing towards absolute Maxwellians, are the first explicitly 
known nonlinear BE solutions having that property. 

It is a great pleasure to thank Drs R Balian and H Hermann for fruitful discussions. 
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